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Abstract
In this paper, we consider a noisy network of nonlinear systems in the sense that each system is driven by two sources of
state-dependent noise: (1) an intrinsic noise that can be generated by the environment or any internal fluctuations and (2)
a noisy coupling which is generated by interactions with other systems. Our goal is to understand the effect of noise and
coupling on synchronization behaviors of such networks. First, we assume that all the systems are driven by a common noise
and show how a common noise can be detrimental or beneficial for network synchronization behavior. Then, we assume
that the systems are driven by independent noise and study network approximate synchronization behavior. We numerically
illustrate our results using the example of coupled Van der Pol oscillators.

Keywords Noisy networks · Stochastic synchronization · Approximate synchronization · Homogeneous networks ·
Heterogeneous networks

1 Introduction

Couplednonlinear oscillatormodels are fundamental inmod-
eling and analyzing the synchronization behavior of systems
with rhythmic behavior, including systems in ecology, neu-
roscience, and engineering (Winfree 2001; Hoppensteadt
and Izhikevich 2012; Demir et al. 2000; Hajimiri and
Lee 1998; Goldbeter 2002; Ermentrout and Terman 2010;
Kuramoto 2003). Example phenomena that aremodeledwell
by coupled nonlinear oscillators include biological rhythms
(Winfree 1967; Liu et al. 1997), neural synchrony (Hop-
pensteadt and Izhikevich 2012), locomotion gaits (Aminzare
et al. 2018; Aminzare and Holmes 2019), collective motion
in animal groups (Leonard et al. 2012), fish schools (Paley
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et al. 2007), cooperative robotic networks (Klein 2008),
power networks (Dorfler et al. 2013), coupled Josephson
arrays (Wiesenfeld et al. 1998), and sinoatrial pacemakers
(Michaels et al. 1987). These simple models often miss
environmental fluctuations as well as internal and external
disturbances. In contrast, a stochastic dynamics approach
provides a significant compromise in terms of keeping mod-
eling complexity tractable while still capturing important
phenomena.

The problem of understanding the influence of stochastic
perturbations on the synchronization behavior in networks
of nonlinear systems has received some attention in the
literature. In a large-scale model of the human brain net-
work is studied in Pang et al. (2021), the authors report
that the addition of noise increases the synchronization of
global and local dynamics. Noise-induced synchronization
in networks of excitable systems is studied in Touboul et al.
(2020), and authors report that for low noise, the solu-
tions remain in the vicinity of the resting state; for large
noise, the solutions are asynchronous; and themedium noise,
the synchronized periodic responses are obtained. Jafar-
ian et al. (2021) study stochastic stability of discrete-time
phase coupled oscillators and derive sufficient conditions for
achieving the phase-cohesiveness. Meng and Riecke (2018)
study synchronization in networks of multiple coupled oscil-
lator networks and show that for strong inhibitory coupling
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between networks, the rhythms of each coupled oscillator
network synchronize even if the noisy inputs to different
oscillator networks are completely uncorrelated.

In addition to the intrinsic noise present at each sys-
tem in the network, the interconnection noise also plays an
important role in synchronization. Experimental studies of
cortical areas show that heterogeneity in the connections
plays a critical role in their synchronization behaviors (Aradi
and Soltesz 2002). Synchronization behavior has been stud-
ied theoretically in large-scale networks of firing-rate and
FitzHugh–Nagumo neurons interconnected with stochastic
synapses (see (Sompolinsky et al. 1988), and (Hermann and
Touboul 2012) and in quorum sensing networks (Fan et al.
2019)).

In this paper, we consider a broad class of network of
nonlinear systems (e.g., oscillators) that are coupled through
either linear coupling (e.g., gap junction in neuronal popu-
lations) or nonlinear coupling (e.g., sinusoidal coupling in
coupled Kuramoto oscillators). In addition, we consider two
sources of nonlinear stochasticity in the network: one affects
the systems, which we will refer to as a common noise (e.g.,
a common stimulus that drives a population of neurons), and
the other perturbs the connection between the systems (e.g.,
noisy synaptic coupling). The objective is to explore the
influence of each network element on the synchronization
behavior of the network. In particular, we introduce a syn-
chronization measure that reflects all the network parameters
(such as noise intensity and network connectivity) and show
how tuning these parameters would alter the synchronization
status of the network.

There have been some efforts to find conditions for syn-
chronization in stochastic networks, see for example (Russo
and Shorten 2018; Russo et al. 2019; Pham et al. 2009),
where both the coupling and the common noise intensity are
linear functions of the state. There are also some interesting
results which guarantee synchronization onset in networks
with no coupling but common noise, Teramae and Tanaka
(2004). InRusso and Shorten (2018), the authors study noise-
induced synchronization in a network of nonlinear systems
which are coupled through deterministic diffusive coupling.
They assume that each system is driven by a common state-
dependent noise, where the intensity of the noise is a linear
function of the state. In Russo et al. (2019), the authors
consider a network of nonlinear systems which are cou-
pled through both deterministic and stochastic coupling and
characterize the influence of stochastic coupling on the syn-
chronization behavior. However, this work does not consider
any common or intrinsic noise.

Motivated by coupled Kuramoto oscillators which are
connected through nonlinear coupling and phase equations
of coupled noisy oscillators in which the common noise is
nonlinear (see, e.g., Ly and Ermentrout (Jan 2010); Amin-
zare and Srivastava (2021)), we first extend the results given

in Russo and Shorten (2018); Russo et al. (2019) to a net-
workof nonlinear systemswhich are drivenby commonnoise
whose intensity is a nonlinear function of state and are cou-
pled through nonlinear stochastic and deterministic coupling
functions. In this scenario, we rigorously characterize the
conditions of the nonlinear noise intensity and coupling func-
tions such that they aid synchronization.

We then generalize the results to approximate synchro-
nization for heterogeneous noisy networks, i.e., networks of
nonlinear systems in which the local noise is not the same for
each system. The approximate synchronization behavior is
similar to the practical synchronization (Montenbruck et al.
2015) and quasi-synchronization (He et al. 2013) behavior
studied in the context of heterogeneous deterministic per-
turbation to network of nonlinear systems. Similar to the
practical synchronization behavior, we show that by mak-
ing the coupling strength strong enough, the steady-state
behavior of the system can be driven arbitrarily close to syn-
chronization.

Ourmain goal is to find conditions that foster synchroniza-
tion in networks of coupled stochastically perturbed systems,
in which the systems are subject to a common perturbation or
perturbations through their interactions with other systems
in the network. Here, we model both stochastic perturba-
tions by nonlinear multiplicative (state-dependent) Itô terms.
We introduce a synchronization metric that depends on the
intrinsic dynamics of each system, the coupling function and
the underlying network topology, the common noise which
drives the systems, and the noise which affects the connec-
tions. We will analyze each factor’s conducive or destructive
effects on the network’s synchronization. First, we show
that, in general, adding multiplicative state-dependent noise
to a synchronized deterministic network is detrimental to
synchronization. The network may synchronize with small
common noise but, in general, desynchronizes for large
commonmultiplicative noise.We then show that addingmul-
tiplicative noise can aid synchronization if a linear function
of the state lower bounds the common multiplicative noise.

Our main contributions are twofold: (1) generalization
of the (complete) synchronization conditions in Russo and
Shorten (2018) andRusso et al. (2019) to networkswith com-
mon nonlinear state-dependent noise and skew-symmetric
nonlinear coupling functions, which are a generalization of
diffusive coupling functions; and (2) considering heteroge-
neous intrinsic noise and provide conditions that guarantee
approximate synchronization.

The remainder of the paper is organized as follows. In
Sect. 2, we study the “complete” synchronization behav-
ior of homogeneous noisy networks where the individuals
are driven by a common noise. We provide conditions that
guarantee stochastic synchronization in such networks and
introduce a class of homogeneous noisy networks that take
advantage of noise to foster synchronization. In contrast,
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in Sect. 3, we study the “approximate” synchronization
behavior of heterogeneous noisy networkswhere the individ-
uals are driven by independent noises and showhowcoupling
fosters synchronization in these heterogeneous networks. In
Sect. 4, we numerically illustrate the theoretical results using
the example of coupled Van der Pol oscillators. We conclude
in Sect. 5. All the proofs are given in Sect. 6.

2 Stochastic synchronization
in homogeneous noisy networks

In this section, we consider a network of N coupled identical
systems with two sources of state-dependent noise: (1) an
intrinsic noise which is common among all systems and can
be generated by the environment and (2) a coupling noise
which is generated by interactions with other systems. For
i = 1, . . . , N , let the stochastic differential equation (SDE)

dφi = F(φi , t)dt + σK(φi , t)dW
︸ ︷︷ ︸

Homogeneous intrinsic dynamics

+
N
∑

j=1

ci j
(

εH(φ j , φi )dt + δC(φ j , φi )dWi j (t)
)

︸ ︷︷ ︸

Coupling dynamics

(1)

describe the dynamics of system i with state φi ∈ R
n . The

intrinsic and coupling dynamics of system i are described as
below.

Intrinsic dynamicsThe systems are identical and governed by
an n-dimensional vector of nonlinear functions,F . There is a
source of noise in (1)which is common among all the systems
in the network and described by σK(φi , t)dW . The constant
σ ≥ 0 is the commonnoise intensity,K : Rn×R≥0 → R

n×n ,
and W is an n-dimensional vector of independent standard
Wiener processes. Since the intrinsic dynamics are common
among all the systems, we refer to this network as a homo-
geneous noisy network.

Coupling dynamics Denote the underlying network graph by
G and assume that it is an undirected and weighted graph
with weight ci j , i.e., ci j = c ji ≥ 0, with ci j > 0 if
i and j are connected; and ci j = 0 if i and j are not
connected. The interaction between system i and another
system, say j , influences the dynamics of i through a
deterministic term ci jεH(φ j , φi )dt and a stochastic term
ci jδC(φ j , φi )dWi j , where H, C : R

n × R
n → R

n×n , and
Wi = (Wi1, . . . , Wi N )� is a vector of independent standard
Wiener processes. The processes W and Wi ’s are assumed
to be mutually independent. The constants ε ≥ 0 and δ ≥ 0,
respectively, describe the coupling strength and interaction

noise intensity of the overall network while εci j and δci j ,
respectively, specify the coupling strength and noise inten-
sity of each connection.

For now, we only assume that F , H, K, and C are non-
linear functions and they are nice enough so that (1) has a
unique solution, for example, they are Lipschitz and satisfy
a linear growth condition. See (Mao 2011, Section 2.3) for
more details. Later in Theorems 1 and 2, we will discuss
appropriate conditions of these functions.

In what follows we review definitions of stochastic sta-
bility and stochastic synchronization. Subsequently, in Theo-
rem 1, we will provide a sufficient condition that guarantees
stochastic synchronization in (1). In the following section,
Theorem 2 will discuss more conditions that foster synchro-
nization in such networks.

Definition 1 (Stochastic stability) Let x(t) be a solution of
an SDE. Then,

Moment exponential stability. x(t) is p-th (p > 0)
moment exponentially stable if there are a pair of positive
constants C and c and a neighborhood �0 of x(0) such
that for any solution y with y(0) ∈ �0

E‖y(t) − x(t)‖p < C E‖y(0) − x(0)‖pe−ct , ∀t > 0,

where E denotes the expected value and ‖·‖ denotes the
Euclidean norm. When p = 2, x(t) is said to be expo-
nentially stable in mean square.

Almost sure exponential stability. x(t) is almost sure
exponentially stable if there is a neighborhood�0 of x(0)
such that for any solution y with y(0) ∈ �0

lim sup
t→∞

1

t
log ‖y(t) − x(t)‖ < 0, almost surely (a.s.),

which means P
{

lim supt→∞ 1
t log ‖y(t) − x(t)‖ < 0

}

= 1.

Clearly, the p-th moment exponential stability means that
the solution y tends to x exponentially, and the so-called p-th
moment Lyapunov exponent of y is negative:

lim sup
t→∞

1

t
logE‖y(t) − x(t)‖p < 0.

In general p-th moment stability and almost sure exponen-
tial stability are not equivalent and additional conditions are
required to deduce one from the other (Mao 2011, Section
4.4).

123



150 Biological Cybernetics (2022) 116:147–162

Definition 2 (Stochastic invariance) A set S is called an
invariant set for an SDE, if for any x0 ∈ S,P {x(t) ∈ S, ∀t ≥
0} = 1, where x(t) is a solution of the SDE starting from x0
at t = 0.

Definition 3 (Stochastic synchronization) Let S be the set
of states defined by S := {x = (x1, . . . , xN )� | x1 = · · · =
xN }.We say that a network stochastically synchronizes ifS is
stochastically invariant and for any solution x(t) there exists
s(t) ∈ S such that x(t) converges to s(t) exponentially, that
is

E‖x(t) − s(t)‖p < C E‖x(0) − s(0)‖pe−ct , ∀t > 0,

and some c, C > 0, (2)

or

lim sup
t→∞

1

t
log ‖x(t) − s(t)‖ < 0, a.s. (3)

Although the systems in (1) can be of any arbitrary dimen-
sion, in the following theorems, for the ease of notation,
we assume that the state variables are one-dimensional,
n = 1.

We denote the Laplacian matrix of the underlying net-
work graph G by L [c] (where the subscript [c] represents the
weights ci j ) and its eigenvalues by 0 = λ1,[c] ≤ λ2,[c] ≤
· · · ≤ λN ,[c].

Theorem 1 (Stochastic synchronization: exponential sta-
bility in mean square) Fix �1 ⊂ R and let �2 := {x −
y | x, y ∈ �1}. Consider (1) and assume that:

i there exists a constant c̄F such that for all x, y ∈ �1 and
t ≥ 0,

(x − y)(F(x, t) − F(y, t)) ≤ c̄F (x − y)2; (4)

ii H : �1 × �1 → R satisfies H(x, y) = −H(y, x) and
there exists a constant cH such that for all x, y ∈ �1,
cH(x − y)2 ≤ (x − y)H(x, y);

iii there exists a nonnegative constant c̄C such that for all
x, y ∈ �1, |C(x, y)| ≤ c̄C |x − y|; and

iv there exists a nonnegative constant c̄K such that for all
x, y ∈ �1 and t ≥ 0,

|K(x, t) − K(y, t)| ≤ c̄K|x − y|.

Then, for any solution (φ1, . . . , φN )�, there exists a solu-
tion on S := {x = (x1, . . . , xN )� | x1 = · · · = xN }, namely
(ψ(t), . . . , ψ(t))�, where ψ(t) = 1

N

∑N
i=1 φi (t), such that

E

N
∑

i=1

|φi (t) − ψ(t)|2

< E

N
∑

i=1

|φi (0) − ψ(0)|2e−ct , ∀t > 0,

and

c := −2c̄F + 2εcHλ − 2δ2c̄2C
(

1 − 1

N

)

λN ,[c2]

−
(

1 − 1

N

)

σ 2c̄2K. (5)

In (5), if cH > 0 , then λ = λ2,[c], otherwise, λ = λN ,[c].
λN ,[c2] denotes the largest eigenvalue of the Laplacian matrix
of network graph G with weights c2i j .

Therefore, the network stochastically synchronizes (in the
sense of (2) with p = 2) when c > 0.

On the synchronization manifold S := {x = (x1, . . . ,
xN )� | xi = ψ}, the dynamics of the network (1) becomes
dψ = F(ψ, t)dt +σK(ψ, t)dW , in which a unique solution
exists ifF andK satisfy the Lipschitz and growth conditions:
∃K1, K2 > 0 such that ∀x, y: ‖F(x) − F(y)‖ + ‖K(x) −
K(y)‖ ≤ K1‖x − y‖, and ‖F(x)‖2 + ‖K(x)‖2 ≤ K2(1 +
‖x‖2), where ‖ · ‖ denotes the Euclidean norm.

Condition (i) is a one-sided Lipschitz condition for F
(bounded above). Unlike a Lipschitz constant which must
be positive, c̄F could take any values. Although the Lips-
chitz condition implies one-sided Lipschitz condition for F
with a nonnegative c̄F , we assume Condition (i) to allow
one-sided Lipschitz condition with any c̄F . This condition
is also called QUAD condition since the left-hand side of
(4) is bounded by a quadratic term. For c̄F < 0, the con-
dition is equivalent to the vector field F being contractive
in L2 norm. This means that the distance between any two
flows decreases and the flows converge to each other expo-
nentially. For more details see (DeLellis et al. 2011). This
is an easy condition to check. The best one-sided Lipschitz
constant for a differentiable F is supx λx where λx is the
largest eigenvalue of 1

2 (DF(x) + DF(x)�). Here, DF is
the Jacobian of F , or simply, the derivative of F when F is
scalar. For example, for a Kuramoto oscillator c̄F = 0 and
for a FitzHugh–Nagumo model it is equal to 1.

In Condition (ii), the skew-symmetric condition is a gen-
eralization of diffusive coupling to nonlinear coupling. This
condition guarantees the existence of an invariant synchro-
nization manifold, i.e., the coupling dynamics vanish on the
synchronization manifold, since H(x, x) = 0. Also, for
technical proofs, we assume that H is bounded below by
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a linear function. Here are three examples of these types
of coupling: 1) A gap junction H(x, y) = x − y with
cH = 1; 2) A sinusoidal function H(x, y) = sin(x − y)

defined on �1 = [−π/2 π/2)2 with cH = 0 as in coupled
Kuramoto oscillators; and 3) A nonlinear coupling described
by H(x, y) = H(x) − H(y), where H is a one-sided Lip-
schitz function (bounded below) and cH is the Lipschitz
constant of H .

In Condition (iii), we assume a linear upper bound for
the stochastic coupling C which ensures that the coupling
vanishes on the synchronizationmanifold,C(x, x) = 0.Later
in Theorem 2, we will consider a class of coupling functions
C which are lower bounded by linear functions and will show
how it helps synchronization.

The Lipschitz condition given in (iv) is necessary for the
existence and uniqueness of the solutions on the synchro-
nization manifold. Note that when c̄K = 0, K becomes
constant, i.e., K becomes an additive noise. So the last term
in c becomes zero and therefore it suggests that the additive
noise has no detrimental or beneficial effects on a network
synchronization. In Theorem 2, we will consider a class of
multiplicative noise which are lower bounded by linear func-
tions and show how these bounds aid synchronization.

The constant c consists of four terms related to deter-
ministic and stochastic intrinsic and coupling dynamics,
respectively, and the topology of the network graph. The
first term in c depends on the intrinsic dynamics of iso-
lated systems. The second term in c depends on the coupling
term, coupling intensity, and the algebraic connectivity of
the underlying graph, λ = λ2,[c] (in the case of positive cH).
The algebraic connectivity of a graph, which determines how
well-connected the graph is, may increase or decrease when
the size of the graph changes. For example, in a line graph,
the algebraic connectivity decreases as N increases while in
an all to all graph it increases. In an almost surely connected
Erdös–Rényi graph, the algebraic connectivity increases as
N increases (Von 2014). Therefore, our condition guarantees
that large random networks of systems which are connected
through, e.g., diffusive or sinusoidal coupling have a better
chance to synchronize.

The third term in c reflects the stochastic coupling. So sim-
ilar to the second term, it depends on the coupling intensity
(δ), coupling dynamics (c̄C) and the topology of the under-
lying graph (the largest eigenvalue and the number of the
nodes). The fourth term in c reflects the intrinsic noise. Note
that both the third and fourth terms are always negative and
show that the noise could be detrimental for synchroniza-
tion, as this might be intuitively correct. However, this is not
always true. Indeed, noise can be beneficial for network syn-
chronization. For example, if all the individuals in a network
are driven by a common noise, this common noise can act as
a driving force to all the systems and foster synchronization.
In Theorem 2, we formally state this intuitive idea.

In Theorem 1, we showed that if a network synchronizes
in the absence of any noise (common noise or noise induced
by the interactions among the nodes in the network), it could
also synchronize in the presence of sufficiently small noise
and we found an upper bound for the noise intensities which
guarantee such behavior, i.e., we proved that if the noise
intensities are such that c > 0, then the network preserves
its synchronization behavior. However, c > 0 is a sufficient
condition for synchronization, and so, a network may syn-
chronize with a negative c. In the following theorem, we
consider networks with negative c and find a new sufficient
condition for synchronization. Indeed, the next result shows
that multiplicative noise terms can be beneficial for networks
synchronization, if they are lower bounded by some linear
functions.

Theorem 2 (Noise-induced synchronization) Consider
conditions (i–iv) of Theorem 1 and furthermore assume that

i C : �1 × �1 → R satisfies C2(x, y) = C2(y, x) and
there exists a nonnegative constant cC such that for all
x, y ∈ �1, cC |x − y| ≤ |C(x, y)|; and

ii there exists a nonnegative constant cK such that for all
x, y ∈ �1 and t ≥ 0,

cK(x − y)2 ≤ (x − y)(K(x, t) − K(y, t)).

Let

α1 = − c

2
= c̄F − εcHλ + δ2c̄2C

(

1 − 1

N

)

λN ,[c2]

+1

2

(

1 − 1

N

)

σ 2c̄2K,

α2
2 = (σcK)2 + δ2c2Cλ22,[c]

N 2 ,

and assume that 0 ≤ α1 < α2
2 . Then, for 0 < p <

2(1 − α1
α2
2
) ≤ 2 and α := −p[( p

2 − 1)α2
2 + α1] (which

is positive), (1) stochastically synchronizes, that is, for
any solution (φ1, . . . , φN )�, there exists a solution on
S := {x = (x1, . . . , xN )� | x1 = · · · = xN }, namely
(ψ(t), . . . , ψ(t))�, where ψ(t) = 1

N

∑N
i=1 φi (t), such that

E‖e(t)‖p ≤ E‖e(0)‖p e−αt ,

e(t) is p− th moment exponential stable, and

lim sup
t→∞

1

t
log ‖e(t)‖ ≤ α1 − α2

2,

e(t) is almost surely exponential stable, where e = (φ1 −
ψ, . . . , φN − ψ)� is the corresponding error.
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The sufficient condition for stochastic synchronization
suggested by Theorem 2 is 0 ≤ α1 < α2

2. Since c = −2α1 <

0, the result of Theorem 2 is a complementary to the result of
Theorem1 (where c > 0 implies stochastic synchronization).
Consider a deterministic network which does not synchro-
nize, i.e., c̄F −εcHλ ≥ 0. Theorem 2 guarantees that adding
a common noise with c̄2K < 2N

N−1c
2
K and sufficiently large

intensity, aims the network to synchronize (no noisy cou-
pling is considered here).

Under the conditions of Theorems 1 and 2, p-th moment
exponential stability implies almost sure exponential stabil-
ity. See (Mao 2011, Section 4.4, Theorem 4.2).

In summary, Theorems 1 and 2 provide sufficient condi-
tions for stochastic synchronization.Both theorems are stated
for homogeneous noise and guarantee complete synchro-
nization. Strong multiplicative noise can destroy synchro-
nization in the first theorem, while in the second theorem,
multiplicative noise with a linear lower bound can foster
synchronization.

In the following section, we state two theorems similar to
Theorems 1 and 2 in the sense of how noise can be detrimen-
tal or beneficial for network synchronization. We relax the
homogeneity condition of intrinsic noise and allow an inde-
pendent noise to drive the systems. This leads to approximate
synchronization instead of complete synchronization.

3 Approximate synchronization
in heterogeneous noisy networks

In this section, we consider (1), where we assume that each
system is driven by an independent noise instead of a com-
mon noise, i.e., we consider a network of heterogeneous
noisy systems:

dφi = F(φi , t)dt + σiK(φi , t)dWi
︸ ︷︷ ︸

Heterogeneous intrinsic dynamics

+
N
∑

j=1

ci j
(

εH(φ j , φi )dt + δC(φ j , φi )dWi j (t)
)

︸ ︷︷ ︸

Coupling dynamics

.

(6)

All the terms in (6) are as defined in (1), except that dWi ’s are
independent standard Wiener processes. The goal is to study
the synchronization behavior of (6). However, the conditions
of the previous section do not guarantee stochastic synchro-
nization in such heterogeneous networks (see Example 3 in
Section 4). Therefore, inwhat follows, we provide conditions
that the heterogeneous noisy network given in (6) approxi-
mately synchronizes in the sense of the following definition:

Definition 4 (Approximate synchronization) Let S be the
set of states defined by S := {x = (x1, . . . , xN )� | x1 =
· · · = xN }. A stochastic network approximately synchro-
nizes if S is stochastically invariant and for any solution x(t)
there exist s(t) ∈ S and η ≥ 0 such that

E‖x(t) − s(t)‖p ≤ η, as t → ∞, (7)

that is, the p-th moment of the error is upper bounded by a
constant η.

Theorem 3 (Approximate synchronization inmean square)
Assume that the conditions (i–iv) of Theorem 1 hold. Fur-
thermore, assume that there exists γ > 0 such that for any
solution (φ1, . . . , φN )�, ψ(t) = 1

N

∑N
i=1 φi (t) satisfies

E‖ψ(t)‖2 ≤ γ 2.

Also, assume that K(0, t) is bounded, supt ‖K(0, t)‖ =
K0. Then, for any solution (φ1, . . . , φN )�,

E

N
∑

i=1

|φi (t) − ψ(t)|2

≤
(

E

N
∑

i=1

|φi (0) − ψ(0)|2 − η

)

e−cat + η, ∀t > 0,

(8)

where

ca = −2c̄F + 2εcHλ − 2δ2c̄2C
(

1 − 1

N

)

λN ,[c2]

−2
(

1 − 1

N

)

c̄2Kmax
i

σ 2
i ,

(the subscript “a” in ca stands for approximate synchroniza-
tion) and

η = 1

ca

(

1 − 1

N

)

(c̄Kγ + K0)
2
∑

i

σ 2
i .

Therefore, when ca > 0, the network approximately synchro-
nizes (in the sense of (7) with p = 2).

Note that (8) can be written as

E

N
∑

i=1

|φi (t) − ψ(t)|2 ≤ E

N
∑

i=1

|φi (0) − ψ(0)|2 e−cat

+1 − e−cat

ca
η̄, (9)

where η̄ = caη is a positive constant and hence for any value
of ca , 1−e−ca t

ca
η̄ is always nonnegative.
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Theorem 3 is a generalization of Theorem 1 when either
σdW is replaced by σi dW or σi dWi . In this case, roughly
speaking, the solutions exponentially converge to a tube that
surrounds the synchronization solution instead of converging
to the synchronization solution. In Theorem 3, for equal σi s,
ca = c, so the rate of convergence to the tube that surrounds
the synchronization solution remains unchanged.

Next, we generalize Theorem 2 to heterogeneous noisy
networks. The goal is to classify the networks which do
not synchronize in the absence of noise, while they approxi-
mately synchronize in the presence of independent noise.

Theorem 4 (Noise-induced expedited approximate
synchronization) Consider the conditions of Theorems 1, 2,
and 3 where δ = 0. Let

β1 = −c̄F + εcHλ − 1

2

(

1 − 1

N

)

c̄2Kmax
i

σ 2
i ,

β2
2 = min

i
σ 2

i

c2K
2N

.

and assume that 0 ≤ β1 ≤ β2
2 . Then, for 0 < p < 2(1− β1

β2
2
),

any solution (φ1, . . . , φN )� satisfies,

E

(

N
∑

i=1

|φi (t) − ψ(t)|2
)

p
2

≤
⎛

⎝E

(

N
∑

i=1

|φi (0) − ψ(0)|2
)

p
2

− ζ

⎞

⎠

× e−βt + ζ, ∀t > 0, (10)

where β = −p
(

β1 +
(

p
2 − 1

)

β2
2

)

> 0, ζ = 1
β
(l1E

(e�e)
p
2 −1 + l2E(e�e)

p−1
2 + l3E(e�e)

p
2 −2), l1 ≥ 0, l2 ≥ 0

and l3 ≤ 0 are constants.

Consider a deterministic network such that c̄F − εcHλ <

0. Theorem4 shows that the desynchronizing effect of adding
independent intrinsic noise is mitigated to some extent under
appropriate conditions.

The results in Theorems 3 and 4 carry the flavor of prac-
tical synchronization studied in networks of deterministic
nonlinear oscillators (Montenbruck et al. 2015). Specifically,
from the expression of η in Theorem 3, one can obtain the
set of parameters (coupling strength, noise intensity, etc.) that
can drive the system arbitrarily close to synchronization.

In summary, Theorems 3 and 4 provide sufficient con-
dition for stochastic synchronization. Both theorems are
stated for heterogeneous noise and guarantee approximate
synchronization. Strongmultiplicative noise can destroy syn-
chronization in thefirst theorem,while in the second theorem,
multiplicative noise with a linear lower bound can mitigate
desynchronization to some extent.

4 Examples

In this section, we illustrate the results of Theorems 1–4 by
a network of noisy Van der Pol oscillators described by

(

dx (i)
1

dx (i)
2

)

=
(

x (i)
1 − 1

3 (x (i)
1 )3 − x (i)

2

x (i)
1

)

︸ ︷︷ ︸

F

dt

+σK(X (i))

(

dW (i)
1

dW (i)
2

)

︸ ︷︷ ︸

dW (i)

, i ∈ {1, . . . , N },

(11)

that are coupled through a coupling function H(·) with cou-
pling strength ε:

d X (i) = F(X (i))dt + σK(X (i))dW (i)

+ ε
[

∑n
j=1 ci j H(x ( j)

1 − x (i)
1 ) 0

]�
dt, (12)

where the state of oscillator i is denoted by X (i) =
(x (i)

1 , x (i)
2 ), the intrinsic dynamics is given by F , the state-

dependent noise is given by K with constant noise intensity
σ . ci j ’s are the edge weights in the interaction graph under-
lying the network. ci j is set to 1 if an edge exists between
nodes i and j ; and is set to zero, otherwise. In Examples 1–
2, we consider a common noise, i.e., dW (i) = dW , for each
i , as in Theorems 1–2. In contrast, in Examples 3–4, we
consider independent noise as in Theorems 3–4. In the fol-
lowing examples, the noise terms σK are chosen such that
they satisfy the conditions of Theorems 1–4, respectively,
and illustrate the corresponding results. We will illustrate
synchronization amongVan der Pol oscillators using the syn-
chronization error defined by

e(t) = 1

N

N
∑

i=1

⎛

⎝

∥

∥

∥

∥

∥

∥

X (i)(t) − 1

N

N
∑

j=1

X ( j)(t)

∥

∥

∥

∥

∥

∥

1

⎞

⎠ .

In the following,we consider the synchronization error e(t) at
t = 200 sec as the steady-state synchronization error. For the
numerical simulations, we compute the steady-state synchro-
nization error by averaging the steady-state synchronization
error for 20 realizations of noise sequence.

Example 1 In this example, we assume a common noise in
(11)–(12) and let ε = 2. We set H(x) = x , i.e., the coupling
is diffusive. We select the interaction network as a (fixed)
realization of Erdös–Rényi graph with 10 nodes in which
an edge exists between any two distinct pair of nodes with
probability 0.5.
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Fig. 1 Steady-state synchronization error for 10 Van der Pol oscilla-
tors coupled through a random graph with coupling strength ε = 2 as
described in Equation (12) with H(x) = x . a Synchronization error
for multiplicative noise. The system retains synchronization for small

noise, while it loses synchronization when the noise intensity increases
(as expected by Theorem 1). b The network preserves its synchroniza-
tion behavior even in the presence of large additive noise (as expected
by Theorem 1, since c̄K = 0). See Example 1

In Fig. 1a, we consider a multiplicative noise K(X (i)) =
diag(sin(10x (i)

1 ), sin(10x (i)
2 )) and show the steady-state syn-

chronization error as a function of noise intensity σ . Observe
that the network synchronizes in the absence of noise, σ = 0;
it preserves its synchronization as noise increases slightly
and it loses its synchronization as noise becomes large. In
this example, c̄F = 1, cH = 1, λ ≈ 1, and c̄K = 10. Thus,
Theorem 1 guarantees synchronization for σ < 0.14. How-
ever, as seen in Fig. 1a, the synchronization is preserved until
σ ≈ 1.25, which suggests that while the sufficient conditions
in Theorem 1 capture the qualitative behavior of the system,
they are conservative.

In Fig. 1b, we consider an additive noise K(X (i)) = 1.
Observe that the network preserves its synchronization for
all values of σ . Here, c̄K = 0 and c > 0 for all values
of σ . Thus, these numerical simulations are consistent with
Theorem 1.

Example 2 In this example, we select the interaction graph
as a line graph with 3 nodes. We assume a common noise in
(11)–(12) and let ε = 0 (no edge coupling) and K(X (i)) =
[

1+x (i)
1 +sin(x (i)

1 /10) 0

0 1+x (i)
2 +sin(x (i)

2 /10)

]

. It can be verified that

each entry ofK(X (i)) satisfies the assumptions of Theorem2.
Figure 2 shows the steady-state synchronization error as a
function of the noise intensity σ . The system does not syn-
chronize in the absence of edge coupling and small common
noise, and synchronization is achieved for large common
noise even in the absence of edge coupling. For this example,
cK ≈ 0.9 and c̄K ≈ 1.1. It can be verified that Theorem 2
requires σ to be at least

√
2 to guarantee synchronization;

however, synchronization is achieved at σ ≈ 0.3 suggesting
that the conditions on Theorem 2 are conservative.

Fig. 2 Noise-induced synchronization of three Van der Pol oscilla-
tors as described in Equation (12) with no edge coupling (ε = 0)

and common noise K(X (i)) =
[

1+x (i)
1 +sin(x (i)

1 /10) 0

0 1+x (i)
2 +sin(x (i)

2 /10)

]

.

No synchronization is achieved when σ is small, while synchronization
is achieved when σ is large enough. See Example 2.

Example 3 In this example, we assume heterogeneous noise
(independent intrinsic noise) in (11)–(12).We select the same
network and parameters as in Example 1. Figure 3 shows that
the steady-state synchronization error increases with noise
intensity σ , which is consistent with Theorem 3.

Example 4 In this example, we assume heterogeneous noise
(independent intrinsic noise) in (11)–(12) and select the same
network and parameters as in Example 2. Differently from
Example 2, we let ε = 0.2 and take H(x) = sin(x).
Figure 4 shows asynchrony for small σ values. However,
it should be noted that the evolution of the system for
longer time (≈ 300 sec) does lead to synchronization.
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Fig. 3 Synchronization error of van der Pol oscillators described in
Equation (12) with H(x) = x and heterogeneous noise of intensity σ .
The steady-state synchronization error increaseswith the noise intensity
σ . See Example 3

Fig. 4 Noise-induced expedited approximate synchronization of Van
der Pol oscillators with small edge coupling (ε = 0.2) and heteroge-

neous noise with K(X (i)) =
[

1+x (i)
1 +sin(x (i)

1 /10) 0

0 1+x (i)
2 +sin(x (i)

2 /10)

]

as

described in Equation (12). No synchronization at σ = 0 improves for
approximate synchronization for moderate values of σ . For large σ ,
while approximate synchronization is achieved, the associated value of
η may be quite large. See Example 4

Approximate synchronization is achieved for moderate val-
ues of noise intensity σ ≈ 0.05 and the steady-state
synchronization error is reduced. Thus, addingmoderate het-
erogeneous noise expedites convergence to achieve (approx-
imate) synchronization. Further increase in σ results in a
higher value of η and leads to a larger steady-state synchro-
nization error.

5 Discussion

Typically, it is assumed that noise plays a destructive role
and desynchronizes a network of synchronized oscillators
(e.g., Teramae and Kuramoto (2001)). However, it has been

observed both experimentally and theoretically that adding
noise not only preserves synchronization, but also can aid
synchronization; seeErmentrout et al. (2008) andMcDonnell
and Ward (2011) for a review.

In this paper, we studied the synchronization behav-
ior of stochastic networks with nonlinear state-dependent
noise terms described in Equations (1) and (6). These equa-
tions represent a broad range of network dynamics that
can model many biological systems. For example, these
frameworks cover the interconnected Kuramoto phase oscil-
lators that model the brain’s neural activity where the neural
dynamics are subject to noise. The level of a functional
connection between two regions is proportional to synchro-
nization between the oscillators’ phases associated with the
two regions (Menara et al. 2019). These frameworks also
cover neuronal models such as Hodgkin–Huxley, Morris–
Lecar, and FitzHugh–Nagumo which are connected through
gap junctions. As another example, these frameworks cover
coupled bursting models (Ghigliazza and Holmes 2004a, b)
that approximate the dynamics of coupled central pattern
generators (CPGs) (Marder and Bucher 2001; Ijspeert 2008)
which are complex networks of neurons that produce rhyth-
mic behaviors, such as walking. Synchronization properties
and cluster formation of coupled CPGs explain the genera-
tion of various gait patterns in animal locomotion (Aminzare
et al. 2018; Aminzare and Holmes 2019).

In Theorems 1 and 3, we studied destructive effects of
noise on networks’ synchronization properties: we identi-
fied a class of synchronized networks in which adding any
additive noise or weak multiplicative noise does not ruin
(approximate) synchronization while adding strong multi-
plicative noise desynchronizes the network. In Theorems 2
and 4, in contrast, we studied constructive effects of noise
on networks’ synchronization properties. In Theorem 2, we
identified a class of multiplicative noise that can aid syn-
chronization in desynchronized networks. Such behavior is
reported for example in Pang et al. (2021) for a large-scale
model of the human brain network. In Theorem4,we showed
that heterogeneous multiplicative noise with a linear lower
bound can mitigate desynchronization to some extent. The
conditions of our theorems are easy to check. The only extra
condition that we imposed to a noise term to foster synchro-
nization was a linear lower bound (compare Theorems 1 and
2 or Theorems 3 and 4).

The ideas discussed in this paper can be further explored in
several possible directions. First,we studied the cases of inde-
pendent intrinsic noise. An interesting avenue is to explore
the case with partially correlated noise. This is specifically
interesting when the network is spatially embedded and the
intrinsic noise is correlated due to the spatial proximity of
systems. Another interesting direction of investigation is to
understand the trade-off between the robustness of noise-
induced synchronization and the precision of the oscillator.
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Specifically, adding common noise can make synchroniza-
tion behavior more robust at the cost of the precision in the
oscillator timing. Understanding the class of cost functions
that may underlie handling this trade-off can provide rich
insights into biological systems.

6 Proofs of Theorems

Proof of Theorem 1 The proof has three main steps:

Step 1. Introducing a synchronization manifold. Let
(φ1, . . . , φN )� be a solution of (1), ψ(t) := 1

N

∑N
i=1 φi (t)

be the average of φi ’s, and ei := φi −ψ be the corresponding
error. The dynamics of (e1, . . . , eN , ψ) can be written as:

⎛

⎜

⎝

de1
...

deN

⎞

⎟

⎠ =
⎛

⎜

⎝

1 − 1
N − 1

N · · · − 1
N

. . .

− 1
N − 1

N · · · 1 − 1
N

⎞

⎟

⎠

N×N

×
⎛

⎜

⎝

⎛

⎜

⎝

F(e1 + ψ, t)
...

F(eN + ψ, t)

⎞

⎟

⎠ +ε

⎛

⎜

⎝

H1(e, ψ)
...

HN (e, ψ)

⎞

⎟

⎠

⎞

⎟

⎠ dt

(13a)

+
⎛

⎜

⎝

1 − 1
N − 1

N · · · − 1
N

. . .

− 1
N − 1

N · · · 1 − 1
N

⎞

⎟

⎠

N×N

×
⎛

⎜

⎝

σK(e1 + ψ, t)dW
...

σK(eN + ψ, t)dW

⎞

⎟

⎠ (13b)

+
⎛

⎜

⎝

1 − 1
N − 1

N · · · − 1
N

. . .

− 1
N − 1

N · · · 1 − 1
N

⎞

⎟

⎠

N×N

× (

C1(e, ψ) | · · · | CN (e, ψ)
)

⎛

⎜

⎝

dW1
...

dWN

⎞

⎟

⎠ ,

(13c)

dψ = 1

N

N
∑

i=1

(F(ei + ψ, t) + εHi (e, ψ)) dt

+ δ

N

N
∑

i, j=1

c jiC(e j , ei )dWi j

+ σ

N

N
∑

i=1

K(ei + ψ, t)dW , (13d)

where in (13a), for i = 1, . . . , N ,

Hi (e, ψ) =
N
∑

j=1

ci jH(e j + ψ, ei + ψ),

and in (13c), Ci (e, ψ) is an N × N matrix with its i-th row
δ(ci1C(e1 +
ψ, ei + ψ), . . . , ci NC(eN + ψ, ei + ψ) and its other rows
are zero row vectors, and dWi = (dWi1, . . . , dWi N )� is
an N -dimensional Wiener increment. We denote the N × N
matrix in (13a)–(13c) by A.

Let e = (e1, . . . , eN )� and y = (e1, . . . , eN , ψ)�, and
define V ( y, t) = 1

2e�e. Note that the set of zeros of V is

S :=
{

(e1, . . . , eN , ψ, t)� ∈ �N
2 × �1 × [0,∞)

∣

∣

∣

e1 = · · · = eN = 0
}

.

This set is a candidate for the desired synchronization man-
ifold. In the following two steps we show that if c > 0, then
S is an exponentially stable invariant set for (13a)–(13d) and
therefore it is the synchronization manifold.

Step 2. Invariant property of the synchronization mani-
fold. Note that the Itô derivative of V is equal to

dV ( y, t) = LV ( y, t)dt + Vy( y, t)�g( y, t)dW,

where dW is a one-dimensional Wiener increment and

LV ( y, t) := Vt ( y, t)+Vy( y, t)� f ( y, t)

+ 1

2
tr
[

g�( y, t)Vy y( y, t)g( y, t)
]

. (14)

The (N + 1)-dimensional vectors f ( y, t) and g( y, t) are,
respectively, the drift and diffusion terms of (13a)–(13d),
Vt = ∂V

∂t = 0, Vy = ∂V
∂ y = (e�, 0)�, and Vy y( y, t) is the

(N + 1) × (N + 1) Hessian matrix of V which is a diagonal
matrixwith all entries equal to 1 except the last diagonal entry
which is equal to 0. The trace operator is denoted by tr[·].
We show that there exists cL > 0 such that LV ≤ −cLV .
Then, by (Stanzhitskii 2001, Theorem 1) we conclude that S
is an invariant set for (13a)–(13d).

• Because e1 + · · · + eN = 0, e� A = e�, and

e�

⎛

⎜

⎝

F(ψ, t)
...

F(ψ, t)

⎞

⎟

⎠ = 0. Therefore, the second term of the

right-hand side of (14) becomes:

Vy( y, t)� f ( y, t) = (e�, 0)� f (e, ψ, t)
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= (e1, . . . , eN )

⎧

⎪
⎨

⎪
⎩

⎛

⎜

⎝

F(e1 + ψ, t)
...

F(eN + ψ, t)

⎞

⎟

⎠

−
⎛

⎜

⎝

F(ψ, t)
...

F(ψ, t)

⎞

⎟

⎠+ ε

⎛

⎜

⎝

H1(e, ψ)
...

HN (e, ψ)

⎞

⎟

⎠

⎫

⎪
⎬

⎪
⎭

=
N
∑

i=1

ei (F(ei + ψ, t) − F(ψ, t))

+ ε

N
∑

i=1

ei Hi (e, ψ).

Thefirst sum satisfies
∑N

i=1 ei (F(ei +ψ, t)−F(ψ, t)) ≤
c̄F
∑N

i=1 e2i = 2c̄FV ( y, t), following condition (i) and
the definition of V . By condition (ii) and using ci j = c ji ,
the second sum satisfies

ε

N
∑

i=1

ei Hi (e, ψ)

= ε

N
∑

i=1

ei

N
∑

j=1

c jiH(e j + ψ, ei + ψ)

= ε

2

N
∑

i=1

N
∑

j=1

c ji (eiH(e j + ψ, ei + ψ)

+ e jH(ei + ψ, e j + ψ))

= − ε

2

N
∑

i=1

N
∑

j=1

c ji (ei − e j )H(ei + ψ, e j + ψ) condition (ii)

< − ε

2

N
∑

i=1

N
∑

j=1

c jicH(ei − e j )
2 condition (ii)

= −εcHe�L [c]e.

Since e�v1 = 0, where v1 = (1, . . . , 1)� is the eigen-
vector of L [c] corresponding to λ1,[c] = 0, by min–max
theorem, λ2,[c]e�e ≤ e�L [c]e ≤ λN ,[c]e�e. Therefore,
depending on the sign of cH, we have:

ε

N
∑

i=1

ei Hi (e, ψ) < −εcHe�L [c]e ≤ −εcHλ2,[c]e�e

= −2εcHλ2,[c]V ( y, t) for cH > 0,

or

ε

N
∑

i=1

ei Hi (e, ψ) < −εcHe�L [c]e ≤ −εcHλN ,[c]e�e

= −2εcHλN ,[c]V ( y, t) for cH < 0.

Therefore, Vy( y, t)� f ( y, t) ≤ (2c̄F − 2εcHλ)V ( y, t).

• Because A

⎛

⎜

⎝

σK(ψ, t)dW
...

σK(ψ, t)dW

⎞

⎟

⎠ = 0, (13b) can be replaced

by AK (e, ψ, t)dW where

K (e, ψ, t) =
(

σ(K(e1 + ψ, t) − K(ψ, t)), . . . , σ

(K(eN + ψ, t) − K(ψ, t))
)�

.

A straightforward matrix multiplication implies that the
third term of LV satisfies:

1

2
tr
[

g�( y, t)Vy y( y, t)g( y, t)
]

= δ2

2

(

1 − 1

N

) N
∑

i=1

N
∑

j=1

c2i jC2(e j + ψ, ei + ψ)

+1

2
‖AK (e, ψ, t)‖2,

where by condition (iii)

δ2

2

(

1 − 1

N

) N
∑

i=1

N
∑

j=1

c2i jC2(e j + ψ, ei + ψ)

≤ δ2

2

(

1 − 1

N

)

c̄2C
N
∑

i=1

N
∑

j=1

c2i j (e j − ei )
2

= δ2
(

1 − 1

N

)

c̄2Ce�L [c2]e

≤ δ2
(

1 − 1

N

)

c̄2CλN ,[c2]e�e

= 2δ2
(

1 − 1

N

)

c̄2CλN ,[c2]V ( y, t).

Using A� A = A and simplemultiplication, we can show

that K � A� AK =
(

1 − 1
N

)

K �K . Then, by condition

(iv)

1

2
‖AK (e, ψ, t)‖2=1

2

(

1 − 1

N

)

‖K (e, ψ, t)‖2

= σ 2

2

(

1 − 1

N

)
N
∑

i=1

(K(ei + ψ, t) − K(ψ, t))2

≤ σ 2

2

(

1 − 1

N

)
N
∑

i=1

c̄2Ke2i

= σ 2
(

1 − 1

N

)

c̄2KV ( y, t).

Therefore, LV ( y, t) ≤ −cLV ( y, t) where cL = c =
−2c̄F + 2εcHλ − 2δ2c̄2C(1 − 1

N )λN ,[c2] −
(

1 − 1
N

)

σ 2c̄2K.

If c > 0 then LV ≤ −cV < 0, and by (Stanzhitskii 2001,
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Theorem 1), S becomes an invariant set for (13a)–(13d). In
Step 3 below, we use ELV ( y, t) ≤ −cLEV ( y, t).

Step 3. Stability of the synchronization manifold. As we
discussed in Step 2, the Itô derivative of V is dV ( y, t) =
L(V ( y, t))dt+V �

y g( y, t)dW . ByDynkin’s formula (Dynkin
1965, Theorem 7.4.1):

EV ( y(t), t) − EV ( y(0), 0)

= E

∫ t

0
LV ( y(τ ), τ ) dτ Dynkin’s formula,

=
∫ t

0
ELV ( y(τ ), τ ) dτ Fubini’s Theorem,

≤ −c
∫ t

0
EV ( y(τ ), τ ) dτ Step 2.

The second equality holds because ELV ( y(τ ), τ ) is a con-
tinuous function of τ and hence its integral on [0, t] is finite.
Let h(t) = EV ( y(t), t), then for δt > 0

h(t + δt) − h(t) ≤ −c
∫ t+δt

t
h(τ ) dτ.

Dividing both sides by δt and letting δt → 0+, we obtain

D+h(t) ≤ −ch(t), (15)

where D+ is the upper Dini derivative of h. Applying com-
parison lemma, (Khalil 2002, Lemma 3.4):

h(t) ≤ h(0)e−ct .

Hence,

EV ( y(t), t) ≤ EV ( y(0), 0)e−ct

⇒ E‖e(t)‖2 ≤ E‖e(0)‖2 e−ct ,

or equivalently,

E

N
∑

i=1

|φi (t) − ψ(t)|2 ≤ E

N
∑

i=1

|φi (0) − ψ(0)|2 e−ct .

If c > 0, then S becomes exponentially stable. Since ei =
φi − ψ = 0 almost surely, by the definition of stochastic
synchronization and Step 2, S becomes a synchronization
manifold.

Note that Step 3 can also be followed from [Mao (2011),
Chapter 4, Theorem4.4].Weprovided Step 3,which contains
a different approach than (Mao 2011, Chapter 4, Theorem
4.4), for a self-contained proof. ��
Proof of Theorem 2 To prove Theorem 2, we use the follow-
ing lemma which is a modified version of [Mao (2011),
Chapter 4, Corollary 4.6].

Lemma 1 Consider dx = f (x, t)dt + g(x, t)dW and
assume that there exist constants α1 and α2 such that for
any t ≥ 0,

x� f (x, t) + 1

2
tr[g�(x, t)g(x, t)] ≤ α1x�x, and (16)

α2x�x ≤ ‖x�g(x, t)‖. (17)

If 0 ≤ α1 < α2
2 , then the trivial solution of dx =

f (x, t)dt + g(x, t)dW is p-th moment exponentially stable
for 0 < p < 2(1− α1

α2
2
) ≤ 2 and α := −p[( p

2 −1)α2
2 +α1] >

0, i.e., ∀t > 0

E‖x(t)‖p < E‖x(0)‖pe−αt .

Under the conditions of Theorems 1 and 2, we apply
Lemma 1 to (13a)-(13c). The left-hand side of (16) is
equivalent to L(V ( y, t)) which we showed L(V ( y, t)) ≤
−cV ( y, t) = − c

2e�e. Therefore, α1 = −c/2. Straightfor-
ward matrix multiplications yield:

‖e�g‖2 = |e� AK (e, ψ, t)|2
+ ‖e� A

(

C1(e, ψ) | · · · | CN (e, ψ)
) ‖2

= |e�K (e, ψ, t)|2
+ ‖e� (C1(e, ψ) | · · · | CN (e, ψ)

) ‖2

where the second equality holds because e� A = e�. In
what follows we find lower bounds for |e�K (e, ψ, t)|2 and
‖e� (C1(e, ψ) | · · · | CN (e, ψ)

) ‖2.

|e�K (e, ψ, t)|2

= σ 2

(

N
∑

i=1

ei (K(ei + ψ, t) − K(ψ, t))

)2

= σ 2

(

N
∑

i=1

(ei + ψ − ψ)(K(ei + ψ, t) − K(ψ, t))

)2

≥ (σcK)2

(

N
∑

i=1

e2i

)2

= (σcK)2(e�e)2,

where the inequality holds by condition (ii) of Theorem 2;
and

‖e� (C1(e, ψ) | · · · | CN (e, ψ)
) ‖2

= δ2
N
∑

i=1

e2i

N
∑

j=1

c2i jC2(e j + ψ, ei + ψ)
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≥ δ2c2C
N
∑

i, j=1

e2i c2i j (ei − e j )
2

= δ2c2C
N 2

⎛

⎝

N
∑

i, j=1

ei ci j (ei − e j )

⎞

⎠

2

≥ δ2c2Cλ22,[c]
N 2 (e�e)2,

where the first inequality holds by condition (i) of Theo-
rem 2, and the second equality holds by Hölder inequality.

Therefore, α2
2 = (σcK)2 + δ2c2Cλ22,[c]

N 2 . By Lemma 1, for

p < 2 − 2α1/α
2
2,

E

(

N
∑

i=1

|φi (t) − ψ(t)|2
)p/2

≤ E

(

N
∑

i=1

|φi (0) − ψ(0)|2
)p/2

e−αt ,

where α := −p[( p
2 − 1)α2

2 + α1] > 0.
The proof of almost sure exponential stability is straight-

forward by (Mao 2011, Chapter 4, Theorem 3.3). ��

Proof of Theorem 3 The proof is very similar to the proof of
Theorem 1, except that (13b) becomes

A

⎛

⎜

⎝

σ1K(e1 + ψ, t)dW1
...

σNK(eN + ψ, t)dWN

⎞

⎟

⎠ ,

or equivalently, AK̂ (e, ψ, t)

⎛

⎜

⎝

dW1
...

dWN

⎞

⎟

⎠

where

K̂ (e, ψ, t) := diag
(

σiK(ei + ψ, t)
)

. (18)

Next, we compute 1
2 tr
[

(AK̂ )� AK̂
]

. Since A� A = A, ele-

mentary calculations show that

1

2
tr
[

(AK̂ )� AK̂
]

= 1

2

(

1 − 1

N

) N
∑

i=1

σ 2
i (K(ei + ψ, t))2

(19a)

= 1

2

(

1 − 1

N

) N
∑

i=1

σ 2
i (K(ei + ψ, t)

− K(ψ, t) + K(ψ, t))2 (19b)

≤
(

1 − 1

N

)
(

N
∑

i=1

σ 2
i (K(ei + ψ, t) − K(ψ, t))2

+
N
∑

i=1

σ 2
i K(ψ, t)2

)

. (19c)

(19c) holds by elementary inequality 1
2 (a + b)2 ≤ a2 + b2.

The first term of (19c) satisfies:

(

1 − 1

N

)

E

N
∑

i=1

σ 2
i (K(ei + ψ, t) − K(ψ, t))2

≤
(

1 − 1

N

)

E

N
∑

i=1

σ 2
i c̄2Ke2i

≤ 2
(

1 − 1

N

)

c̄2Kmax
i

σ 2
i EV ( y, t),

where we use the Lipschitz property of K. The second term
of (19c) satisfies:

(

1 − 1

N

)

E

N
∑

i=1

σ 2
i K(ψ, t)2

≤
(

1 − 1

N

)

E

N
∑

i=1

σ 2
i (K(ψ, t) − K(0, t) + K(0, t))2

(20a)

≤
(

1 − 1

N

)

E

N
∑

i=1

σ 2
i (c̄K|ψ | + K0)

2 (20b)

≤
(

1 − 1

N

)

E

N
∑

i=1

σ 2
i (c̄2K|ψ |2 + K2

0 + 2c̄KK0|ψ |) (20c)

≤
(

1 − 1

N

)
N
∑

i=1

σ 2
i (c̄Kγ + K0)

2, (20d)

where we use Jensen’s inequality (E|ψ |)2 ≤ E|ψ |2 ≤ γ 2.
Therefore,

1

2
E tr

[

(AK̂ )� AK̂
]

≤ 2
(

1 − 1

N

)

c̄2Kmax
i

σ 2
i EV ( y, t)

+
(

1 − 1

N

)
N
∑

i=1

σ 2
i (c̄Kγ + K0)

2.

Following the proof of Theorem 1, ELV ( y, t) ≤ −caE

V ( y, t) + η̄ where

ca = −2c̄F + 2εcHλ − 2δ2c̄2C
(

1 − 1

N

)

λN ,[c2]

−2
(

1 − 1

N

)

c̄2Kmax
i

σ 2
i ,
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and η̄ =
(

1 − 1
N

)
∑N

i=1 σ 2
i (c̄Kγ + K0)

2.

In what follows, we prove that if ELV ( y, t) ≤ −caE

V ( y, t) + η̄, for some constants ca and η̄, then

E

N
∑

i=1

|φi (t) − ψ(t)|2 ≤
(

E

N
∑

i=1

|φi (0) − ψ(0)|2 − η̄

ca

)

×e−cat + η̄

ca
, ∀t > 0,

which is a generalization of Step 3 in the proof of
Theorem 1.

Equation (15) from Step 3 of Theorem 1 becomes
D+h(t) ≤ −cah(t) + η̄. Multiplying both sides by ecat , we
obtain D+(ecat h(t)) ≤ η̄ ecat . Note that since D+ is subad-
ditive (Rouche et al. 1977, Appendix I), i.e., D+( f + g) ≤
D+ f + D+g,

D+
(

ecat h(t) − ecat η̄

ca

)

≤ D+(ecat h(t)) + D+
(

−ecat η̄

ca

)

≤ η̄ecat − caecat η̄

ca
= 0,

which implies that ecat h(t) − ecat η̄
ca

is non-increasing:

ecat h(t) − ecat η̄

ca
≤ h(0) − η̄

ca
,

and therefore (8) holds, as desired. ��
Proof of Theorem 4 The proof follows from a generalization
of Lemma 1. Let W (e) = (e�e)

p
2 . It is easy to verify that

LW = p(e�e)
p
2 −1

(

e� f + 1

2
tr[g�g]

)

+ p
( p

2
− 1
)

(e�e)
p
2 −2‖e�g‖2. (21)

In what follows, we show that ELW ≤ −β EW + ζ̄ . Then,
similar to the argument that we made at the end of the proof
of Theorem 3, we conclude our desired result.

Step 1. In Theorem 1, we showed that e� f ≤ (2c̄F −
2εcHλ)e�e. Therefore,

E

[

p(e�e)
p
2 −1e� f

]

≤ p(c̄F − εcHλ)E(e�e)
p
2

= p(c̄F − εcHλ)EW . (22)

Step 2. In this step, we show that for some l1 and l2:

p

2
E(e�e)

p
2 −1tr[g�g] ≤ p

2

(

1 − 1

N

)

c̄2Kmax
i

σ 2
i EW

+l1E(e�e)
p
2 −1 + l2E(e�e)

p−1
2 ,

where g = AK̂ and K̂ is as defined in (18).

tr
[

(AK̂ )� AK̂
]

=
(

1 − 1

N

)
N
∑

i=1

σ 2
i (K(ei + ψ, t)

− K(ψ, t) + K(ψ, t))2 (23a)

≤
(

1 − 1

N

) N
∑

i=1

σ 2
i (K(ei + ψ, t)

− K(ψ, t))2 +
(

1 − 1

N

) N
∑

i=1

σ 2
i K(ψ, t)2 (23b)

2

(

1 − 1

N

) N
∑

i=1

σ 2
i K(ψ, t)(K(ei + ψ, t) − K(ψ, t)),

(23c)

where we use (19a) and expand (ai + bi )
2, The first term of

(23b) satisfies:

E(e�e)
p
2 −1

N
∑

i=1

σ 2
i (K(ei + ψ, t) − K(ψ, t))2

≤ E(e�e)
p
2 −1

N
∑

i=1

σ 2
i c̄2Ke2i

≤ c̄2Kmax
i

σ 2
i E(e�e)

p
2 ,

where we use the Lipschitz property of K. The second term
of (23b) satisfies:

E(e�e)
p
2 −1

N
∑

i=1

σ 2
i K(ψ, t)2

≤ E(e�e)
p
2 −1

E

N
∑

i=1

σ 2
i (K(ψ, t) − K(0, t) + K(0, t))2

≤ E(e�e)
p
2 −1

E

N
∑

i=1

σ 2
i (c̄K|ψ | + K0)

2

≤ E(e�e)
p
2 −1

N
∑

i=1

σ 2
i (c̄Kγ + K0)

2.

We use the fact that e and ψ are independent and Jensen’s
inequality (E|ψ |)2 ≤ E|ψ |2 ≤ γ 2. Therefore,

l1 = p

2

(

1 − 1

N

) N
∑

i=1

σ 2
i (c̄Kγ + K0)

2.
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Finally, (23c) satisfies:

E

[

(e�e)
p
2 −1

N
∑

i=1

σ 2
i K(ψ, t)(K(ei + ψ, t) − K(ψ, t))

]

=
N
∑

i=1

E [σiK(ψ, t)]E
[

σi (e
�e)

p
2 −1(K(ei + ψ, t)

−K(ψ, t))] ≤
(

N
∑

i=1

(E [σiK(ψ, t)])2
)

1
2

(

N
∑

i=1

(

E

[

σi (e
�e)

p
2 −1(K(ei + ψ, t) − K(ψ, t))

])2
)

1
2

≤ c̄Kmax
i

σi (c̄Kγ + K0)

(

N
∑

i=1

σ 2
i

)
1
2

E

[

(e�e)
p−1
2

]

,

where the first inequality holds by Hölder inequality
∑

i ai bi

≤ (
∑

i a2
i )

1
2 (
∑

i b2i )
1
2 Therefore,

l2 = p
(

1 − 1

N

)

c̄Kmax
i

σi (c̄Kγ + K0)
(

N
∑

i=1

σ 2
i

) 1
2
.

Step 3. In this step, we show that

p
( p

2
− 1
)

E(e�e)
p
2 −2‖e�g‖2 ≤ p

( p

2
− 1
)

(

min
i

σ 2
i c

2
K
)

EW + l3 E
(

e�e
) p−1

2
,

for some constant l3.

‖e� AK̂ (e, ψ, t)‖2
= ‖e� K̂ (e, ψ, t)‖2 (24a)

=
N
∑

i=1

σ 2
i |ei (K(ei + ψ, t) − K(ψ, t)) + eiK(ψ, t)|2

(24b)

≥
N
∑

i=1

σ 2
i

2

∣

∣ei (K(ei + ψ, t)

− K(ψ, t))
∣

∣
2 − σ 2

i

∣

∣eiK(ψ, t)
∣

∣
2 (24c)

≥
N
∑

i=1

σ 2
i

2
c2Ke4i −

N
∑

i=1

σ 2
i (c̄K|ψ | + K0)

2 (24d)

≥ min
i

σ 2
i

c2K
2N

(

N
∑

i=1

e2i

)2

−
N
∑

i=1

σ 2
i (c̄K|ψ | + K0)

2,

(24e)

where we use e� A = e� in (24a) and the fact that (a+b)2 ≥
a2
2 − b2 in (24c). (24d) follows from Condition (ii) of The-
orem 2 and (20b). (24e) follows using Hölder inequality.
Multiplying above inequality by p

( p
2 − 1

)

(e�e)
p
2 −2 and

taking expectation

p
( p

2
− 1
)

E(e�e)
p
2 −2‖e� AK̂ (e, ψ, t)‖2

≥ p
( p

2
− 1
)

β2
2E(e�e)

p
2 + l3E(e�e)

p
2 −2,

where β2
2 = mini σ 2

i
c2K
2N and l3 = −p

( p
2 − 1

)∑N
i=1 σ 2

i
(c̄Kγ + K0)

2 follows from (20d).
Combining Step 1–Step 3, we obtain:

ELW ≤ −βEW + ζ̄ ,

where

β = −p

(

c̄F − εcHλ + 1

2

(

1 − 1

N

)

c̄2Kmax
i

σ 2
i

+
( p

2
− 1
) c2K
2N

min
i

σ 2
i

)

> 0,

and ζ̄ = l1E(e�e)
p
2 −1 + l2E(e�e)

p−1
2 + l3E(e�e)

p
2 −2.

Since ζ̄ comprises exponents of e�e that are smaller than
p/2, for sufficiently large EW , the −βEW term will dom-
inate ζ̄ , which makes ELW non-positive. Thus, EW and ζ̄

will remain bounded.
The remainder of the proof follows similar to Theorem 3

with h(t) = EW . ��
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